If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+98-490=0
We add all the numbers together, and all the variables
5t^2-392=0
a = 5; b = 0; c = -392;
Δ = b2-4ac
Δ = 02-4·5·(-392)
Δ = 7840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7840}=\sqrt{784*10}=\sqrt{784}*\sqrt{10}=28\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{10}}{2*5}=\frac{0-28\sqrt{10}}{10} =-\frac{28\sqrt{10}}{10} =-\frac{14\sqrt{10}}{5} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{10}}{2*5}=\frac{0+28\sqrt{10}}{10} =\frac{28\sqrt{10}}{10} =\frac{14\sqrt{10}}{5} $
| C=8x+60 | | 3/4+1/8=3/4t+8 | | 2/3/360=x | | 4x+60=32+2 | | x=x^2-8x+59 | | 3(x+2)=(x+2)*3 | | 6.3x-4=6x-3 | | (6y)+8=8+(6y) | | 4x-7x=-8 | | M=m/L | | 3(x-4)=18+2x-11 | | 7y+4(8-2y)=8 | | f(8)=8^2+4 | | 3x+7=4x=20 | | 5(x^2)=49.6 | | x+3/7=23/7 | | 51=-x/6 | | -3x-71=-20 | | A=3+4g | | x^2+2x^2+6=100 | | 5x+6=20+x+6 | | -x+220=273 | | 103=33(7-9m)-4(1+4m) | | 49=209-v | | 11x+8x+30=360 | | 78-x=284 | | -2x(4x-5)=2x | | w-1.21=5.33 | | w-1.1=5.33 | | w-1.2=5.33 | | 19x+1=4(3x+1)+7x-3 | | 2y2+4y+-8=0 |